2024年欽州中考已經結束各校分數線公布,為方便考生報考高中,以下小編整理了欽州高中學校中考分數線統(tǒng)計以供考生參考。
一、欽州高中學校中考分數線2024
成績等級=總分等級+(7門筆試科目等級組合) | ||
成績等級 | 本檔人數 | 累計人數 |
A+(7A+) | 454 | 454 |
A+(6A+1A) | 410 | 864 |
A+(6A+1B+) | 40 | 904 |
A+(6A+1B) | 1 | 905 |
A+(5A+2A) | 435 | 1340 |
A+(5A+1A1B+) | 90 | 1430 |
A+(5A+2B+) | 6 | 1436 |
A+(4A+3A) | 472 | 1908 |
A+(4A+2A1B+) | 169 | 2077 |
A+(4A+2A1B) | 1 | 2078 |
A+(4A+1A2B+) | 16 | 2094 |
A+(3A+4A) | 344 | 2438 |
A+(3A+3A1B+) | 144 | 2582 |
A+(3A+2A2B+) | 20 | 2602 |
A+(3A+1A3B+) | 2 | 2604 |
A+(2A+5A) | 146 | 2750 |
A+(2A+4A1B+) | 57 | 2807 |
A+(2A+3A2B+) | 1 | 2808 |
A+(2A+2A3B+) | 2 | 2810 |
A+(1A+6A) | 21 | 2831 |
A+(1A+5A1B+) | 5 | 2836 |
A+(1A+4A2B+) | 1 | 2837 |
A+(1A+3A3B+) | 2 | 2839 |
A+(7A) | 1 | 2840 |
A(6A+1A) | 4 | 2844 |
A(5A+2A) | 4 | 2848 |
A(5A+1A1B+) | 12 | 2860 |
A(5A+1A1B) | 1 | 2861 |
A(5A+2B+) | 4 | 2865 |
A(5A+1B+1B) | 1 | 2866 |
A(4A+3A) | 37 | 2903 |
A(4A+2A1B+) | 69 | 2972 |
A(4A+2A1B) | 4 | 2976 |
A(4A+1A2B+) | 36 | 3012 |
A(4A+1A1B+1B) | 5 | 3017 |
A(4A+3B+) | 7 | 3024 |
A(4A+2B+1B) | 1 | 3025 |
A(3A+4A) | 95 | 3120 |
A(3A+3A1B+) | 221 | 3341 |
A(3A+3A1B) | 8 | 3349 |
A(3A+3A1C+) | 1 | 3350 |
A(3A+2A2B+) | 166 | 3516 |
A(3A+2A1B+1B) | 18 | 3534 |
A(3A+1A3B+) | 60 | 3594 |
A(3A+1A2B+1B) | 7 | 3601 |
A(3A+4B+) | 11 | 3612 |
A(3A+3B+1B) | 1 | 3613 |
A(2A+5A) | 163 | 3776 |
A(2A+4A1B+) | 389 | 4165 |
A(2A+4A1B) | 5 | 4170 |
A(2A+4A1C+) | 2 | 4172 |
A(2A+3A2B+) | 367 | 4539 |
A(2A+3A1B+1B) | 10 | 4549 |
A(2A+3A1B+1C+) | 1 | 4550 |
A(2A+2A3B+) | 218 | 4768 |
A(2A+2A2B+1B) | 24 | 4792 |
A(2A+2A1B+2B) | 1 | 4793 |
A(2A+1A4B+) | 80 | 4873 |
A(2A+1A3B+1B) | 8 | 4881 |
A(2A+1A2B+2B) | 1 | 4882 |
A(2A+5B+) | 15 | 4897 |
A(1A+6A) | 154 | 5051 |
A(1A+5A1B+) | 366 | 5417 |
A(1A+5A1B) | 6 | 5423 |
A(1A+4A2B+) | 473 | 5896 |
A(1A+4A1B+1B) | 30 | 5926 |
A(1A+4A1B+1C+) | 1 | 5927 |
A(1A+4A2B) | 1 | 5928 |
A(1A+3A3B+) | 427 | 6355 |
A(1A+3A2B+1B) | 26 | 6381 |
A(1A+3A1B+2B) | 1 | 6382 |
A(1A+2A4B+) | 268 | 6650 |
A(1A+2A3B+1B) | 35 | 6685 |
A(1A+2A2B+2B) | 1 | 6686 |
A(1A+1A5B+) | 69 | 6755 |
A(1A+1A4B+1B) | 7 | 6762 |
A(1A+1A3B+2B) | 1 | 6763 |
A(1A+6B+) | 9 | 6772 |
A(7A) | 64 | 6836 |
A(6A1B+) | 185 | 7021 |
A(6A1B) | 7 | 7028 |
A(5A2B+) | 407 | 7435 |
A(5A1B+1B) | 18 | 7453 |
A(4A3B+) | 463 | 7916 |
A(4A2B+1B) | 29 | 7945 |
A(4A1B+2B) | 1 | 7946 |
A(3A4B+) | 340 | 8286 |
A(3A3B+1B) | 20 | 8306 |
A(3A2B+2B) | 1 | 8307 |
A(2A5B+) | 140 | 8447 |
A(2A4B+1B) | 6 | 8453 |
A(1A6B+) | 16 | 8469 |
B+(3A+3A1B+) | 2 | 8471 |
B+(3A+3A1B) | 1 | 8472 |
B+(3A+2A1B+1B) | 1 | 8473 |
B+(3A+2A1B+1C+) | 2 | 8475 |
B+(3A+2A1B1C+) | 1 | 8476 |
B+(3A+1A3B+) | 1 | 8477 |
B+(3A+1A2B+1B) | 4 | 8481 |
B+(3A+1A2B+1C+) | 1 | 8482 |
B+(3A+1A2B+1C) | 1 | 8483 |
B+(3A+1A1B+2B) | 5 | 8488 |
B+(3A+1A1B+1B1C+) | 1 | 8489 |
B+(3A+1A3B) | 1 | 8490 |
B+(3A+4B+) | 1 | 8491 |
B+(3A+3B+1B) | 1 | 8492 |
B+(3A+3B+1C+) | 1 | 8493 |
B+(3A+2B+2B) | 2 | 8495 |
B+(2A+4A1B+) | 1 | 8496 |
B+(2A+4A1B) | 1 | 8497 |
B+(2A+3A2B+) | 4 | 8501 |
B+(2A+3A1B+1B) | 6 | 8507 |
B+(2A+3A1B+1C+) | 3 | 8510 |
B+(2A+3A2B) | 3 | 8513 |
B+(2A+2A3B+) | 18 | 8531 |
B+(2A+2A2B+1B) | 20 | 8551 |
B+(2A+2A2B+1C+) | 3 | 8554 |
B+(2A+2A1B+2B) | 9 | 8563 |
B+(2A+1A4B+) | 22 | 8585 |
B+(2A+1A3B+1B) | 29 | 8614 |
B+(2A+1A3B+1C+) | 3 | 8617 |
B+(2A+1A2B+2B) | 4 | 8621 |
B+(2A+1A2B+1B1C+) | 2 | 8623 |
B+(2A+1A1B+3B) | 5 | 8628 |
B+(2A+1A1B+2B1C+) | 2 | 8630 |
B+(2A+1A4B) | 1 | 8631 |
B+(2A+5B+) | 9 | 8640 |
B+(2A+4B+1B) | 10 | 8650 |
B+(2A+4B+1C+) | 2 | 8652 |
B+(2A+3B+2B) | 6 | 8658 |
B+(2A+2B+3B) | 1 | 8659 |
B+(2A+2B+2B1C+) | 1 | 8660 |
B+(2A+1B+3B1C+) | 1 | 8661 |
B+(1A+5A1B+) | 2 | 8663 |
B+(1A+5A1B) | 1 | 8664 |
B+(1A+5A1C+) | 1 | 8665 |
B+(1A+4A2B+) | 16 | 8681 |
B+(1A+4A1B+1B) | 22 | 8703 |
B+(1A+4A2B) | 4 | 8707 |
B+(1A+3A3B+) | 75 | 8782 |
B+(1A+3A2B+1B) | 56 | 8838 |
B+(1A+3A2B+1C+) | 6 | 8844 |
B+(1A+3A1B+2B) | 20 | 8864 |
B+(1A+3A1B+1B1C+) | 2 | 8866 |
B+(1A+3A1B+1B1C) | 1 | 8867 |
B+(1A+3A3B) | 3 | 8870 |
B+(1A+2A4B+) | 149 | 9019 |
B+(1A+2A3B+1B) | 105 | 9124 |
B+(1A+2A3B+1C+) | 11 | 9135 |
B+(1A+2A3B+1C) | 1 | 9136 |
B+(1A+2A2B+2B) | 51 | 9187 |
B+(1A+2A2B+1B1C+) | 9 | 9196 |
B+(1A+2A1B+3B) | 14 | 9210 |
B+(1A+2A1B+2B1C+) | 4 | 9214 |
B+(1A+2A4B) | 1 | 9215 |
B+(1A+2A3B1C+) | 2 | 9217 |
B+(1A+1A5B+) | 155 | 9372 |
B+(1A+1A4B+1B) | 126 | 9498 |
B+(1A+1A4B+1C+) | 2 | 9500 |
B+(1A+1A3B+2B) | 82 | 9582 |
B+(1A+1A3B+1B1C+) | 6 | 9588 |
B+(1A+1A3B+1B1C) | 1 | 9589 |
B+(1A+1A2B+3B) | 25 | 9614 |
B+(1A+1A2B+2B1C+) | 6 | 9620 |
B+(1A+1A2B+2B1C) | 1 | 9621 |
B+(1A+1A1B+4B) | 6 | 9627 |
B+(1A+1A1B+3B1C+) | 2 | 9629 |
B+(1A+6B+) | 56 | 9685 |
B+(1A+5B+1B) | 75 | 9760 |
B+(1A+4B+2B) | 55 | 9815 |
B+(1A+4B+1B1C+) | 5 | 9820 |
B+(1A+3B+3B) | 42 | 9862 |
B+(1A+3B+2B1C+) | 3 | 9865 |
B+(1A+2B+4B) | 19 | 9884 |
B+(1A+2B+3B1C+) | 1 | 9885 |
B+(1A+1B+5B) | 2 | 9887 |
B+(1A+6B) | 1 | 9888 |
B+(5A2B+) | 21 | 9909 |
B+(5A1B+1B) | 15 | 9924 |
B+(5A1B+1C+) | 1 | 9925 |
B+(5A2B) | 4 | 9929 |
B+(5A1B1C+) | 1 | 9930 |
B+(4A3B+) | 138 | 10068 |
B+(4A2B+1B) | 105 | 10173 |
B+(4A2B+1C+) | 4 | 10177 |
B+(4A1B+2B) | 21 | 10198 |
B+(4A1B+1B1C+) | 4 | 10202 |
B+(4A1B+1B1C) | 1 | 10203 |
B+(4A3B) | 2 | 10205 |
B+(3A4B+) | 418 | 10623 |
B+(3A3B+1B) | 307 | 10930 |
B+(3A3B+1C+) | 12 | 10942 |
B+(3A2B+2B) | 126 | 11068 |
B+(3A2B+1B1C+) | 19 | 11087 |
B+(3A2B+1B1C) | 1 | 11088 |
B+(3A1B+3B) | 41 | 11129 |
B+(3A1B+2B1C+) | 4 | 11133 |
B+(3A1B+2B1C) | 2 | 11135 |
B+(3A4B) | 4 | 11139 |
B+(3A3B1C+) | 1 | 11140 |
B+(2A5B+) | 708 | 11848 |
B+(2A4B+1B) | 595 | 12443 |
B+(2A4B+1C+) | 29 | 12472 |
B+(2A3B+2B) | 333 | 12805 |
B+(2A3B+1B1C+) | 31 | 12836 |
B+(2A3B+1B1C) | 4 | 12840 |
B+(2A3B+2C+) | 1 | 12841 |
B+(2A2B+3B) | 171 | 13012 |
B+(2A2B+2B1C+) | 18 | 13030 |
B+(2A2B+1B2C+) | 4 | 13034 |
B+(2A1B+4B) | 52 | 13086 |
B+(2A1B+3B1C+) | 6 | 13092 |
B+(2A1B+2B2C+) | 1 | 13093 |
B+(2A5B) | 4 | 13097 |
B+(2A4B1C+) | 1 | 13098 |
B+(1A6B+) | 682 | 13780 |
B+(1A5B+1B) | 855 | 14635 |
B+(1A5B+1C+) | 22 | 14657 |
B+(1A4B+2B) | 758 | 15415 |
B+(1A4B+1B1C+) | 57 | 15472 |
B+(1A4B+1B1C) | 3 | 15475 |
B+(1A4B+2C+) | 2 | 15477 |
B+(1A3B+3B) | 479 | 15956 |
B+(1A3B+2B1C+) | 48 | 16004 |
B+(1A3B+1B2C+) | 1 | 16005 |
B+(1A2B+4B) | 218 | 16223 |
B+(1A2B+3B1C+) | 15 | 16238 |
B+(1A2B+2B2C+) | 1 | 16239 |
B+(1A1B+5B) | 50 | 16289 |
B+(1A6B) | 4 | 16293 |
B+(7B+) | 362 | 16655 |
B+(6B+1B) | 640 | 17295 |
B+(6B+1C+) | 21 | 17316 |
B+(5B+2B) | 924 | 18240 |
B+(5B+1B1C+) | 43 | 18283 |
B+(5B+1B1C) | 1 | 18284 |
B+(4B+3B) | 894 | 19178 |
B+(4B+2B1C+) | 48 | 19226 |
B+(4B+1B2C+) | 1 | 19227 |
B+(3B+4B) | 443 | 19670 |
B+(3B+3B1C+) | 11 | 19681 |
B+(2B+5B) | 86 | 19767 |
B+(2B+4B1C+) | 4 | 19771 |
B+(1B+6B) | 3 | 19774 |
B(1A+2A2B+1B1C+) | 1 | 19775 |
B(1A+2A4B) | 1 | 19776 |
B(1A+1A2B+3B) | 1 | 19777 |
B(1A+1A2B+2B1C+) | 2 | 19779 |
B(1A+1A2B+1B2C+) | 2 | 19781 |
B(1A+1A1B+4B) | 1 | 19782 |
B(1A+1A1B+3B1C+) | 2 | 19784 |
B(1A+1A1B+3B1C) | 1 | 19785 |
B(1A+1A1B+2B2C+) | 3 | 19788 |
B(1A+1A1B+1B3C+) | 1 | 19789 |
B(1A+1A5B) | 1 | 19790 |
B(1A+4B+2B) | 1 | 19791 |
B(1A+3B+3B) | 3 | 19794 |
B(1A+3B+2B1C+) | 6 | 19800 |
B(1A+3B+2B1C) | 1 | 19801 |
B(1A+3B+3C+) | 1 | 19802 |
B(1A+3B+1C+2C) | 1 | 19803 |
B(1A+2B+4B) | 11 | 19814 |
B(1A+2B+3B1C+) | 4 | 19818 |
B(1A+2B+2B2C+) | 4 | 19822 |
B(1A+2B+2B1C+1C) | 1 | 19823 |
B(1A+2B+1B3C+) | 1 | 19824 |
B(1A+1B+5B) | 7 | 19831 |
B(1A+1B+4B1C+) | 6 | 19837 |
B(1A+1B+3B2C+) | 2 | 19839 |
B(1A+1B+2B3C+) | 2 | 19841 |
B(1A+1B+2B1C+1C1D) | 1 | 19842 |
B(1A+6B) | 2 | 19844 |
B(1A+5B1C+) | 1 | 19845 |
B(1A+4B2C+) | 1 | 19846 |
B(1A+1B5C+) | 1 | 19847 |
B(3A2B+1B1C+) | 1 | 19848 |
B(3A1B+3B) | 2 | 19850 |
B(3A1B+2B1C+) | 3 | 19853 |
B(3A1B+2B1C) | 1 | 19854 |
B(3A3B1C+) | 1 | 19855 |
B(3A2B2C+) | 1 | 19856 |
B(2A3B+1B1C+) | 1 | 19857 |
B(2A3B+1C+1C) | 1 | 19858 |
B(2A2B+3B) | 16 | 19874 |
B(2A2B+2B1C+) | 7 | 19881 |
B(2A2B+2B1C) | 1 | 19882 |
B(2A2B+1B2C+) | 7 | 19889 |
B(2A2B+1B1C+1C) | 2 | 19891 |
B(2A2B+3C+) | 1 | 19892 |
B(2A1B+4B) | 16 | 19908 |
B(2A1B+3B1C+) | 14 | 19922 |
B(2A1B+3B1C) | 1 | 19923 |
B(2A1B+2B2C+) | 9 | 19932 |
B(2A1B+2B1C+1C) | 1 | 19933 |
B(2A5B) | 10 | 19943 |
B(2A4B1C+) | 3 | 19946 |
B(2A3B2C+) | 1 | 19947 |
B(2A1B4C+) | 1 | 19948 |
B(1A5B+1B) | 2 | 19950 |
B(1A4B+2B) | 11 | 19961 |
B(1A4B+1B1C+) | 16 | 19977 |
B(1A4B+1B1C) | 2 | 19979 |
B(1A4B+1B1D) | 1 | 19980 |
B(1A4B+2C+) | 3 | 19983 |
B(1A4B+1C+1C) | 1 | 19984 |
B(1A3B+3B) | 81 | 20065 |
B(1A3B+2B1C+) | 52 | 20117 |
B(1A3B+2B1C) | 5 | 20122 |
B(1A3B+1B2C+) | 9 | 20131 |
B(1A3B+1B1C+1C) | 2 | 20133 |
B(1A3B+1B2C) | 1 | 20134 |
B(1A3B+3C+) | 1 | 20135 |
B(1A2B+4B) | 173 | 20308 |
B(1A2B+3B1C+) | 104 | 20412 |
B(1A2B+3B1C) | 4 | 20416 |
B(1A2B+2B2C+) | 23 | 20439 |
B(1A2B+2B1C+1C) | 5 | 20444 |
B(1A2B+2B2C) | 1 | 20445 |
B(1A2B+1B3C+) | 5 | 20450 |
B(1A2B+1B1C+2C) | 1 | 20451 |
B(1A1B+5B) | 149 | 20600 |
B(1A1B+4B1C+) | 72 | 20672 |
B(1A1B+4B1C) | 1 | 20673 |
B(1A1B+3B2C+) | 32 | 20705 |
B(1A1B+3B1C+1C) | 4 | 20709 |
B(1A1B+2B3C+) | 7 | 20716 |
B(1A1B+2B2C+1C) | 6 | 20722 |
B(1A1B+1B4C+) | 1 | 20723 |
B(1A1B+5C+) | 2 | 20725 |
B(1A6B) | 56 | 20781 |
B(1A5B1C+) | 35 | 20816 |
B(1A5B1C) | 2 | 20818 |
B(1A4B2C+) | 28 | 20846 |
B(1A4B1C+1C) | 1 | 20847 |
B(1A3B3C+) | 14 | 20861 |
B(1A3B2C+1C) | 1 | 20862 |
B(1A2B4C+) | 6 | 20868 |
B(1A2B3C+1C) | 1 | 20869 |
B(1A1B5C+) | 1 | 20870 |
B(6B+1B) | 5 | 20875 |
B(6B+1C+) | 4 | 20879 |
B(5B+2B) | 59 | 20938 |
B(5B+1B1C+) | 34 | 20972 |
B(5B+1B1C) | 1 | 20973 |
B(5B+2C+) | 5 | 20978 |
B(5B+1C+1C) | 1 | 20979 |
B(4B+3B) | 332 | 21311 |
B(4B+2B1C+) | 172 | 21483 |
B(4B+2B1C) | 8 | 21491 |
B(4B+1B2C+) | 22 | 21513 |
B(4B+1B1C+1C) | 2 | 21515 |
B(4B+3C+) | 3 | 21518 |
B(3B+4B) | 928 | 22446 |
B(3B+3B1C+) | 419 | 22865 |
B(3B+3B1C) | 19 | 22884 |
B(3B+3B1D) | 2 | 22886 |
B(3B+2B2C+) | 97 | 22983 |
B(3B+2B1C+1C) | 11 | 22994 |
B(3B+2B1C+1D) | 1 | 22995 |
B(3B+2B2C) | 1 | 22996 |
B(3B+1B3C+) | 10 | 23006 |
B(3B+1B2C+1C) | 6 | 23012 |
B(3B+1B1C+2C) | 1 | 23013 |
B(3B+2C+2C) | 1 | 23014 |
B(2B+5B) | 1291 | 24305 |
B(2B+4B1C+) | 697 | 25002 |
B(2B+4B1C) | 28 | 25030 |
B(2B+3B2C+) | 273 | 25303 |
B(2B+3B1C+1C) | 27 | 25330 |
B(2B+3B2C) | 2 | 25332 |
B(2B+2B3C+) | 97 | 25429 |
B(2B+2B2C+1C) | 11 | 25440 |
B(2B+2B1C+2C) | 3 | 25443 |
B(2B+1B4C+) | 19 | 25462 |
B(2B+1B3C+1C) | 2 | 25464 |
B(2B+5C+) | 3 | 25467 |
B(1B+6B) | 1213 | 26680 |
B(1B+5B1C+) | 1067 | 27747 |
B(1B+5B1C) | 39 | 27786 |
B(1B+5B1D) | 1 | 27787 |
B(1B+4B2C+) | 688 | 28475 |
B(1B+4B1C+1C) | 61 | 28536 |
B(1B+4B2C) | 2 | 28538 |
B(1B+3B3C+) | 394 | 28932 |
B(1B+3B2C+1C) | 54 | 28986 |
B(1B+3B1C+2C) | 5 | 28991 |
B(1B+2B4C+) | 150 | 29141 |
B(1B+2B3C+1C) | 16 | 29157 |
B(1B+2B3C+1E) | 1 | 29158 |
B(1B+1B5C+) | 33 | 29191 |
B(1B+1B4C+1C) | 2 | 29193 |
B(7B) | 775 | 29968 |
B(6B1C+) | 1113 | 31081 |
B(6B1C) | 28 | 31109 |
B(5B2C+) | 1247 | 32356 |
B(5B1C+1C) | 84 | 32440 |
B(5B1C+1D) | 1 | 32441 |
B(5B1C+1E) | 1 | 32442 |
B(4B3C+) | 931 | 33373 |
B(4B2C+1C) | 74 | 33447 |
B(4B2C+1D) | 1 | 33448 |
B(4B1C+2C) | 2 | 33450 |
B(3B4C+) | 366 | 33816 |
B(3B3C+1C) | 14 | 33830 |
B(2B5C+) | 50 | 33880 |
B(1B6C+) | 2 | 33882 |
C+(1A1B+2B1C+1C1D) | 1 | 33883 |
C+(1A4B2C+) | 1 | 33884 |
C+(1A4B1C+1D) | 1 | 33885 |
C+(1A4B2C) | 1 | 33886 |
C+(1A4B2E) | 1 | 33887 |
C+(1A2B3C+1C) | 1 | 33888 |
C+(1A2B2C+2C) | 1 | 33889 |
C+(1A2B2C+1C1D) | 1 | 33890 |
C+(1A1B4C+1C) | 1 | 33891 |
C+(1A1B4C+1E) | 1 | 33892 |
C+(1A1B3C+2C) | 1 | 33893 |
C+(2B+3B1C+1C) | 1 | 33894 |
C+(2B+2B3C+) | 1 | 33895 |
C+(2B+2B2C+1C) | 6 | 33901 |
C+(2B+2B2C+1D) | 1 | 33902 |
C+(2B+2B1C+2C) | 1 | 33903 |
C+(2B+2B1C+2E) | 1 | 33904 |
C+(2B+1B4C+) | 1 | 33905 |
C+(2B+1B3C+1C) | 6 | 33911 |
C+(2B+1B2C+2C) | 2 | 33913 |
C+(2B+1B1C+3C) | 1 | 33914 |
C+(1B+6B) | 1 | 33915 |
C+(1B+5B1C+) | 1 | 33916 |
C+(1B+4B2C+) | 7 | 33923 |
C+(1B+4B1C+1C) | 12 | 33935 |
C+(1B+4B1C+1D) | 1 | 33936 |
C+(1B+4B1C+1E) | 1 | 33937 |
C+(1B+4B2C) | 1 | 33938 |
C+(1B+3B3C+) | 34 | 33972 |
C+(1B+3B2C+1C) | 42 | 34014 |
C+(1B+3B2C+1D) | 1 | 34015 |
C+(1B+3B2C+1E) | 2 | 34017 |
C+(1B+3B1C+2C) | 13 | 34030 |
C+(1B+3B1C+1C1D) | 1 | 34031 |
C+(1B+3B1C+2E) | 1 | 34032 |
C+(1B+3B3C) | 3 | 34035 |
C+(1B+2B4C+) | 78 | 34113 |
C+(1B+2B3C+1C) | 45 | 34158 |
C+(1B+2B3C+1D) | 1 | 34159 |
C+(1B+2B2C+2C) | 22 | 34181 |
C+(1B+2B2C+1C1D) | 1 | 34182 |
C+(1B+2B1C+3C) | 9 | 34191 |
C+(1B+1B5C+) | 57 | 34248 |
C+(1B+1B4C+1C) | 52 | 34300 |
C+(1B+1B4C+1D) | 1 | 34301 |
C+(1B+1B3C+2C) | 18 | 34319 |
C+(1B+1B2C+3C) | 1 | 34320 |
C+(1B+1B1C+4C) | 4 | 34324 |
C+(1B+6C+) | 20 | 34344 |
C+(1B+5C+1C) | 22 | 34366 |
C+(1B+4C+2C) | 12 | 34378 |
C+(1B+3C+3C) | 4 | 34382 |
C+(1B+2C+4C) | 3 | 34385 |
C+(1B+2C+3C1E) | 1 | 34386 |
C+(6B1C+) | 11 | 34397 |
C+(6B1C) | 4 | 34401 |
C+(5B2C+) | 95 | 34496 |
C+(5B1C+1C) | 48 | 34544 |
C+(5B1C+1D) | 1 | 34545 |
C+(5B1C+1E) | 1 | 34546 |
C+(5B2C) | 5 | 34551 |
C+(4B3C+) | 465 | 35016 |
C+(4B2C+1C) | 219 | 35235 |
C+(4B2C+1D) | 6 | 35241 |
C+(4B2C+1E) | 4 | 35245 |
C+(4B1C+2C) | 44 | 35289 |
C+(4B1C+1C1D) | 4 | 35293 |
C+(4B3C) | 1 | 35294 |
C+(4B2C1D) | 1 | 35295 |
C+(3B4C+) | 923 | 36218 |
C+(3B3C+1C) | 499 | 36717 |
C+(3B3C+1D) | 13 | 36730 |
C+(3B3C+1E) | 6 | 36736 |
C+(3B2C+2C) | 136 | 36872 |
C+(3B2C+1C1D) | 8 | 36880 |
C+(3B2C+1C1E) | 3 | 36883 |
C+(3B2C+2D) | 3 | 36886 |
C+(3B1C+3C) | 25 | 36911 |
C+(3B1C+2C1D) | 4 | 36915 |
C+(3B1C+2C1E) | 1 | 36916 |
C+(3B4C) | 1 | 36917 |
C+(2B5C+) | 1098 | 38015 |
C+(2B4C+1C) | 746 | 38761 |
C+(2B4C+1D) | 15 | 38776 |
C+(2B4C+1E) | 3 | 38779 |
C+(2B3C+2C) | 331 | 39110 |
C+(2B3C+1C1D) | 19 | 39129 |
C+(2B3C+1C1E) | 5 | 39134 |
C+(2B2C+3C) | 109 | 39243 |
C+(2B2C+2C1D) | 8 | 39251 |
C+(2B1C+4C) | 22 | 39273 |
C+(2B1C+3C1D) | 1 | 39274 |
C+(2B5C) | 2 | 39276 |
C+(1B6C+) | 852 | 40128 |
C+(1B5C+1C) | 955 | 41083 |
C+(1B5C+1D) | 22 | 41105 |
C+(1B5C+1E) | 3 | 41108 |
C+(1B4C+2C) | 725 | 41833 |
C+(1B4C+1C1D) | 23 | 41856 |
C+(1B4C+1C1E) | 7 | 41863 |
C+(1B3C+3C) | 393 | 42256 |
C+(1B3C+2C1D) | 16 | 42272 |
C+(1B3C+2C1E) | 5 | 42277 |
C+(1B2C+4C) | 137 | 42414 |
C+(1B2C+3C1D) | 6 | 42420 |
C+(1B1C+5C) | 22 | 42442 |
C+(1B1C+4C1D) | 1 | 42443 |
C+(7C+) | 410 | 42853 |
C+(6C+1C) | 723 | 43576 |
C+(6C+1D) | 8 | 43584 |
C+(5C+2C) | 784 | 44368 |
C+(5C+1C1D) | 29 | 44397 |
C+(5C+1C1E) | 4 | 44401 |
C+(4C+3C) | 563 | 44964 |
C+(4C+2C1D) | 21 | 44985 |
C+(4C+2C1E) | 1 | 44986 |
C+(3C+4C) | 169 | 45155 |
C+(3C+3C1D) | 3 | 45158 |
C+(2C+5C) | 22 | 45180 |
C+(1C+6C) | 1 | 45181 |
C(1B+3B2C1E) | 1 | 45182 |
C(1B+1B3C+2C) | 1 | 45183 |
C(1B+1B2C+2C1E) | 1 | 45184 |
C(1B+1B1C+4C) | 1 | 45185 |
C(1B+1B1C+3C1E) | 1 | 45186 |
C(1B+1B5C) | 1 | 45187 |
C(1B+5C+1C) | 1 | 45188 |
C(1B+3C+3C) | 2 | 45190 |
C(1B+3C+2C1D) | 1 | 45191 |
C(1B+2C+4C) | 1 | 45192 |
C(1B+2C+3C1D) | 1 | 45193 |
C(1B+2C+1C3D) | 1 | 45194 |
C(1B+1C+5C) | 2 | 45196 |
C(1B+1C+4C1D) | 1 | 45197 |
C(1B+1C+3C2D) | 1 | 45198 |
C(1B+1C+2C2D1E) | 1 | 45199 |
C(4B1D2E) | 1 | 45200 |
C(4B3E) | 1 | 45201 |
C(3B2C+2C) | 1 | 45202 |
C(3B1C+2C1D) | 1 | 45203 |
C(3B1C1D2E) | 1 | 45204 |
C(2B4C+1E) | 2 | 45206 |
C(2B3C+2C) | 7 | 45213 |
C(2B3C+1C1D) | 2 | 45215 |
C(2B3C+1C1E) | 2 | 45217 |
C(2B3C+1D1E) | 1 | 45218 |
C(2B2C+3C) | 17 | 45235 |
C(2B2C+2C1D) | 3 | 45238 |
C(2B2C+2C1E) | 1 | 45239 |
C(2B2C+1C2D) | 3 | 45242 |
C(2B2C+1C2E) | 1 | 45243 |
C(2B2C+3E) | 1 | 45244 |
C(2B1C+4C) | 7 | 45251 |
C(2B1C+3C1E) | 2 | 45253 |
C(2B1C+2C1D1E) | 2 | 45255 |
C(2B1C+2C2E) | 2 | 45257 |
C(2B5C) | 3 | 45260 |
C(2B2C2D1E) | 1 | 45261 |
C(1B6C+) | 2 | 45263 |
C(1B5C+1C) | 11 | 45274 |
C(1B5C+1E) | 1 | 45275 |
C(1B4C+2C) | 36 | 45311 |
C(1B4C+1C1D) | 7 | 45318 |
C(1B4C+1C1E) | 7 | 45325 |
C(1B4C+1D1E) | 1 | 45326 |
C(1B3C+3C) | 104 | 45430 |
C(1B3C+2C1D) | 28 | 45458 |
C(1B3C+2C1E) | 15 | 45473 |
C(1B3C+1C2D) | 3 | 45476 |
C(1B3C+2D1E) | 1 | 45477 |
C(1B2C+4C) | 146 | 45623 |
C(1B2C+3C1D) | 36 | 45659 |
C(1B2C+3C1E) | 11 | 45670 |
C(1B2C+2C2D) | 4 | 45674 |
C(1B2C+2C1D1E) | 3 | 45677 |
C(1B2C+2C2E) | 2 | 45679 |
C(1B2C+1C3D) | 1 | 45680 |
C(1B1C+5C) | 110 | 45790 |
C(1B1C+4C1D) | 32 | 45822 |
C(1B1C+4C1E) | 10 | 45832 |
C(1B1C+3C2D) | 13 | 45845 |
C(1B1C+3C1D1E) | 3 | 45848 |
C(1B1C+3C2E) | 2 | 45850 |
C(1B1C+2C3D) | 2 | 45852 |
C(1B1C+2C2D1E) | 4 | 45856 |
C(1B1C+2C1D2E) | 2 | 45858 |
C(1B1C+2C3E) | 1 | 45859 |
C(1B1C+1C4E) | 1 | 45860 |
C(1B1C+3D2E) | 1 | 45861 |
C(1B6C) | 43 | 45904 |
C(1B5C1D) | 24 | 45928 |
C(1B5C1E) | 5 | 45933 |
C(1B4C2D) | 9 | 45942 |
C(1B4C1D1E) | 3 | 45945 |
C(1B3C3D) | 1 | 45946 |
C(1B3C2D1E) | 2 | 45948 |
C(1B3C1D2E) | 1 | 45949 |
C(1B2C4D) | 1 | 45950 |
C(7C+) | 1 | 45951 |
C(6C+1C) | 26 | 45977 |
C(6C+1D) | 2 | 45979 |
C(5C+2C) | 175 | 46154 |
C(5C+1C1D) | 24 | 46178 |
C(5C+1C1E) | 8 | 46186 |
C(5C+2D) | 1 | 46187 |
C(5C+2E) | 1 | 46188 |
C(4C+3C) | 533 | 46721 |
C(4C+2C1D) | 97 | 46818 |
C(4C+2C1E) | 25 | 46843 |
C(4C+1C2D) | 2 | 46845 |
C(4C+1C1D1E) | 5 | 46850 |
C(4C+1C2E) | 4 | 46854 |
C(4C+3E) | 2 | 46856 |
C(3C+4C) | 911 | 47767 |
C(3C+3C1D) | 166 | 47933 |
C(3C+3C1E) | 37 | 47970 |
C(3C+2C2D) | 19 | 47989 |
C(3C+2C1D1E) | 8 | 47997 |
C(3C+2C2E) | 5 | 48002 |
C(3C+1C2D1E) | 1 | 48003 |
C(3C+1C1D2E) | 2 | 48005 |
C(3C+1C3E) | 1 | 48006 |
C(2C+5C) | 987 | 48993 |
C(2C+4C1D) | 267 | 49260 |
C(2C+4C1E) | 61 | 49321 |
C(2C+3C2D) | 48 | 49369 |
C(2C+3C1D1E) | 19 | 49388 |
C(2C+3C2E) | 8 | 49396 |
C(2C+2C3D) | 8 | 49404 |
C(2C+2C2D1E) | 4 | 49408 |
C(2C+2C1D2E) | 4 | 49412 |
C(2C+2C3E) | 3 | 49415 |
C(2C+1C4D) | 1 | 49416 |
C(2C+1C3D1E) | 2 | 49418 |
C(2C+1C2D2E) | 1 | 49419 |
C(1C+6C) | 1008 | 50427 |
C(1C+5C1D) | 499 | 50926 |
C(1C+5C1E) | 73 | 50999 |
C(1C+4C2D) | 159 | 51158 |
C(1C+4C1D1E) | 62 | 51220 |
C(1C+4C2E) | 11 | 51231 |
C(1C+3C3D) | 46 | 51277 |
C(1C+3C2D1E) | 27 | 51304 |
C(1C+3C1D2E) | 4 | 51308 |
C(1C+3C3E) | 2 | 51310 |
C(1C+2C4D) | 16 | 51326 |
C(1C+2C3D1E) | 5 | 51331 |
C(1C+2C1D3E) | 1 | 51332 |
C(1C+1C5D) | 1 | 51333 |
C(7C) | 695 | 52028 |
C(6C1D) | 624 | 52652 |
C(6C1E) | 87 | 52739 |
C(5C2D) | 417 | 53156 |
C(5C1D1E) | 101 | 53257 |
C(5C2E) | 14 | 53271 |
C(4C3D) | 215 | 53486 |
C(4C2D1E) | 45 | 53531 |
C(4C1D2E) | 12 | 53543 |
C(3C4D) | 62 | 53605 |
C(3C3D1E) | 17 | 53622 |
C(3C2D2E) | 1 | 53623 |
C(2C5D) | 14 | 53637 |
C(2C4D1E) | 5 | 53642 |
C(1C6D) | 1 | 53643 |
C(1C5D1E) | 1 | 53644 |
D(2B+5E) | 1 | 53645 |
D(1B2C+1C1D2E) | 1 | 53646 |
D(1B2C+1D3E) | 1 | 53647 |
D(1B2C+4E) | 1 | 53648 |
D(1B1C+2C3E) | 1 | 53649 |
D(1B1C+1C2D2E) | 1 | 53650 |
D(1B1C+1C1D3E) | 1 | 53651 |
D(1B1C+5E) | 2 | 53653 |
D(1B4C2D) | 1 | 53654 |
D(1B4C1D1E) | 1 | 53655 |
D(1B3C3D) | 2 | 53657 |
D(1B3C3E) | 1 | 53658 |
D(1B2C2D2E) | 2 | 53660 |
D(1B2C1D3E) | 1 | 53661 |
D(1B2C4E) | 1 | 53662 |
D(1B1C5D) | 1 | 53663 |
D(1B1C4D1E) | 2 | 53665 |
D(1B1C2D3E) | 1 | 53666 |
D(2C+4C1E) | 1 | 53667 |
D(2C+3C2D) | 1 | 53668 |
D(2C+3C1D1E) | 3 | 53671 |
D(2C+3C2E) | 2 | 53673 |
D(2C+2C3D) | 1 | 53674 |
D(2C+2C2D1E) | 3 | 53677 |
D(2C+2C1D2E) | 2 | 53679 |
D(2C+2C3E) | 3 | 53682 |
D(2C+1C2D2E) | 1 | 53683 |
D(2C+1C1D3E) | 1 | 53684 |
D(2C+1C4E) | 5 | 53689 |
D(2C+2D3E) | 1 | 53690 |
D(2C+5E) | 3 | 53693 |
D(1C+5C1D) | 11 | 53704 |
D(1C+5C1E) | 7 | 53711 |
D(1C+4C2D) | 8 | 53719 |
D(1C+4C1D1E) | 14 | 53733 |
D(1C+4C2E) | 9 | 53742 |
D(1C+3C3D) | 16 | 53758 |
D(1C+3C2D1E) | 21 | 53779 |
D(1C+3C1D2E) | 17 | 53796 |
D(1C+3C3E) | 11 | 53807 |
D(1C+2C4D) | 10 | 53817 |
D(1C+2C3D1E) | 20 | 53837 |
D(1C+2C2D2E) | 13 | 53850 |
D(1C+2C1D3E) | 8 | 53858 |
D(1C+2C4E) | 8 | 53866 |
D(1C+1C5D) | 6 | 53872 |
D(1C+1C4D1E) | 9 | 53881 |
D(1C+1C3D2E) | 7 | 53888 |
D(1C+1C2D3E) | 7 | 53895 |
D(1C+1C1D4E) | 3 | 53898 |
D(1C+1C5E) | 6 | 53904 |
D(1C+6D) | 1 | 53905 |
D(1C+5D1E) | 3 | 53908 |
D(1C+4D2E) | 2 | 53910 |
D(1C+3D3E) | 1 | 53911 |
D(1C+2D4E) | 1 | 53912 |
D(1C+1D5E) | 1 | 53913 |
D(7C) | 10 | 53923 |
D(6C1D) | 35 | 53958 |
D(6C1E) | 18 | 53976 |
D(5C2D) | 79 | 54055 |
D(5C1D1E) | 65 | 54120 |
D(5C2E) | 15 | 54135 |
D(4C3D) | 110 | 54245 |
D(4C2D1E) | 124 | 54369 |
D(4C1D2E) | 61 | 54430 |
D(4C3E) | 22 | 54452 |
D(3C4D) | 148 | 54600 |
D(3C3D1E) | 138 | 54738 |
D(3C2D2E) | 55 | 54793 |
D(3C1D3E) | 25 | 54818 |
D(3C4E) | 10 | 54828 |
D(2C5D) | 99 | 54927 |
D(2C4D1E) | 113 | 55040 |
D(2C3D2E) | 75 | 55115 |
D(2C2D3E) | 22 | 55137 |
D(2C1D4E) | 6 | 55143 |
D(2C5E) | 2 | 55145 |
D(1C6D) | 42 | 55187 |
D(1C5D1E) | 53 | 55240 |
D(1C4D2E) | 37 | 55277 |
D(1C3D3E) | 23 | 55300 |
D(1C2D4E) | 8 | 55308 |
D(1C1D5E) | 1 | 55309 |
D(7D) | 5 | 55314 |
D(6D1E) | 7 | 55321 |
D(5D2E) | 9 | 55330 |
D(4D3E) | 6 | 55336 |
E(1B+1D5E) | 1 | 55337 |
E(1B1C+1C4E) | 1 | 55338 |
E(1B1C+2D3E) | 1 | 55339 |
E(1B1C+5E) | 2 | 55341 |
E(1B2C4E) | 2 | 55343 |
E(1B1C1D4E) | 1 | 55344 |
E(1B1C5E) | 6 | 55350 |
E(1B1D5E) | 5 | 55355 |
E(1B6E) | 1 | 55356 |
E(2C+5E) | 2 | 55358 |
E(1C+2C2D2E) | 3 | 55361 |
E(1C+2C1D3E) | 3 | 55364 |
E(1C+2C4E) | 9 | 55373 |
E(1C+1C1D4E) | 5 | 55378 |
E(1C+1C5E) | 23 | 55401 |
E(1C+3D3E) | 2 | 55403 |
E(1C+2D4E) | 7 | 55410 |
E(1C+1D5E) | 8 | 55418 |
E(1C+6E) | 12 | 55430 |
E(5C2E) | 1 | 55431 |
E(4C2D1E) | 1 | 55432 |
E(4C1D2E) | 8 | 55440 |
E(4C3E) | 6 | 55446 |
E(3C3D1E) | 11 | 55457 |
E(3C2D2E) | 24 | 55481 |
E(3C1D3E) | 18 | 55499 |
E(3C4E) | 23 | 55522 |
E(2C5D) | 7 | 55529 |
E(2C4D1E) | 29 | 55558 |
E(2C3D2E) | 41 | 55599 |
E(2C2D3E) | 51 | 55650 |
E(2C1D4E) | 55 | 55705 |
E(2C5E) | 74 | 55779 |
E(1C6D) | 6 | 55785 |
E(1C5D1E) | 25 | 55810 |
E(1C4D2E) | 37 | 55847 |
E(1C3D3E) | 46 | 55893 |
E(1C2D4E) | 54 | 55947 |
E(1C1D5E) | 105 | 56052 |
E(1C6E) | 82 | 56134 |
E(7D) | 1 | 56135 |
E(6D1E) | 9 | 56144 |
E(5D2E) | 19 | 56163 |
E(4D3E) | 19 | 56182 |
E(3D4E) | 21 | 56203 |
E(2D5E) | 64 | 56267 |
E(1D6E) | 137 | 56404 |
E(7E) | 57 | 56461 |
二、欽州高中學校中考分數線2023
欽州2023高中錄取分數線劃定
關于劃定欽州市2023年示范性普通高中
統(tǒng)招生錄取最低成績條件的公告
經市人民政府同意,現將我市2023年示范性普通高中統(tǒng)招生錄取最低成績條件公布如下:
廣大考生可登錄2023年欽州市中考中招管理系統(tǒng)(登錄網址:http://124.227.1.107:8061)查詢錄取結果。凡是沒有被示范性普通高中錄取的考生,可繼續(xù)在7月18日至19日填報非示范性普通高中。
欽州市中招辦咨詢電話:0777-2880977。
三、欽州高中學校中考分數線2022
2022年欽州市高中招生錄取分數線公布,具體如下:
示范性高中分數線:
學校 | 總成績 | 最低學科成績等級組合 | 錄取最后一名單科成績等級 | ||||||
語文 | 數學 | 英語 | 物理 | 化學 | 政史 | 地生 | |||
欽州市第一中學 | A | 1A+4A2B+ | B+ | A | A+ | B+ | A | A | A |
欽州市第二中學 | A | 4A+3A | A+ | A | A | A | A+ | A+ | A+ |
欽州市第三中學 | B+ | 1A+1A4B+1B | B+ | A | A+ | B+ | B+ | B | B+ |
靈山縣靈山中學 | A | 2A+2A3B+ | A | A+ | A+ | B+ | B+ | B+ | A |
靈山縣新洲中學 | A | 3A4B+ | B+ | A | A | B+ | B+ | B+ | A |
浦北縣浦北中學 | A | 1A6B+ | B+ | B+ | A | B+ | B+ | B+ | B+ |
我市2022年非示范性普通高中統(tǒng)招生錄取最低成績條件公布如下:
學校 | 總成績 | 最低學科成績等級組合 | 錄取最后一名單科成績等級 | ||||||
語文 | 數學 | 英語 | 物理 | 化學 | 政史 | 地生 | |||
欽州市第四中學 | B+ | 7B+ | B+ | B+ | B+ | B+ | B+ | B+ | B+ |
欽州市第十三中學 | B+ | 5B+2B | B+ | B+ | B+ | B | B+ | B | B+ |
欽州市高新區(qū)實驗學校 | B+ | 4B+3B | B | B+ | B+ | B+ | B | B | B+ |
欽州市第十六中學 | B+ | 3B+4B | B | B+ | B | B | B+ | B | B+ |
欽北區(qū)小董中學 | B | 2B+5B | B | B | B | B | B+ | B+ | B |
欽北區(qū)大寺中學 | B | 1B+6B | B | B | B+ | B | B | B | B |
欽北區(qū)平吉中學 | B | 1B+5B1C+ | B | B | B+ | B | B | B | C+ |
欽南區(qū)那彭中學 | B | 1B+6B | B | B+ | B | B | B | B | B |
欽州港區(qū)經濟技術開發(fā)區(qū)中學 | B | 3B+2B2C+ | B | C+ | C+ | B | B+ | B+ | B+ |
靈山縣第二中學 | B+ | 2A4B+1B | B | B+ | B+ | B+ | A | A | B+ |
靈山縣那隆中學 | B | 3B+4B | B+ | B | B | B | B+ | B | B+ |
靈山縣化龍中學 | B+ | 3B+4B | B+ | B+ | B+ | B | B | B | B |
靈山縣武利中學 | B+ | 5B+2B | B+ | B+ | B+ | B+ | B | B+ | B |
靈山縣天山中學 | B+ | 7B+ | B+ | B+ | B+ | B+ | B+ | B+ | B+ |
浦北縣第二中學 | B | 2B+5B | B+ | B | B | B | B | B+ | B |
浦北縣金浦中學 | B+ | 1A4B+2B | B | B+ | B | A | B+ | B+ | B+ |
浦北縣寨圩中學 | B | 2B+4B1C+ | B | B | B+ | B | C+ | B+ | B |
浦北縣張黃中學 | B | 1B+5B1C+ | B | B | B+ | B | B | B | C+ |