浙江專升本高等數(shù)學(xué)考試大綱(一)

思而思學(xué)網(wǎng)

浙江省普通高校專升本統(tǒng)考科目:

《高等數(shù)學(xué)》考試大綱

考試要求

考生應(yīng)按本大綱的要求,掌握“高等數(shù)學(xué)”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法?忌鷳(yīng)注意各部分知識的結(jié)構(gòu)及知識的聯(lián)系;具有一定的抽象思維能力、邏輯推理能力、運算能力和空間想象能力;能運用基本概念、基本理論和基本方法進(jìn)行推理、證明和計算;能運用所學(xué)知識分析并解決一些簡單的實際問題。

考試內(nèi)容

一、函數(shù)、極限和連續(xù)

(一)函數(shù)

1.理解函數(shù)的概念,會求函數(shù)的定義域、表達(dá)式及函數(shù)值,會作出一些簡單的分段函數(shù)圖像。

2.掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性。

3.理解函數(shù)y =ƒ(x)與其反函數(shù)y =ƒ-1(x)之間的關(guān)系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。

4.掌握函數(shù)的四則運算與復(fù)合運算; 掌握復(fù)合函數(shù)的復(fù)合過程。

5.掌握基本初等函數(shù)的性質(zhì)及其圖像。

6.理解初等函數(shù)的概念。

7.會建立一些簡單實際問題的函數(shù)關(guān)系式。

(二)極限

1.理解極限的概念(只要求極限的描述性定義),能根據(jù)極限概念描述函數(shù)的變化趨勢。理解函數(shù)在一點處極限存在的充分必要條件,會求函數(shù)在一點處的左極限與右極限。

2.理解極限的唯一性、有界性和保號性,掌握極限的四則運算法則。

3.理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì),無窮小量與無窮大量的關(guān)系。會比較無窮小量的階(高階、低階、同階和等價)。會運用等價無窮小量替換求極限。

4.理解極限存在的兩個收斂準(zhǔn)則(夾逼準(zhǔn)則與單調(diào)有界準(zhǔn)則),掌握兩個重要極限:

,,

并能用這兩個重要極限求函數(shù)的極限。

(三)連續(xù)

1.理解函數(shù)在一點處連續(xù)的概念,函數(shù)在一點處連續(xù)與函數(shù)在該點處極限存在的關(guān)系。會判斷分段函數(shù)在分段點的連續(xù)性。

2.理解函數(shù)在一點處間斷的概念,會求函數(shù)的間斷點,并會判斷間斷點的類型。

3.理解“一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的”,并會利用初等函數(shù)的連續(xù)性求函數(shù)的極限。

4.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):最值定理(有界性定理),介值定理(零點存在定理)。會運用介值定理推證一些簡單命題。

二、一元函數(shù)微分學(xué)

(一)導(dǎo)數(shù)與微分

1.理解導(dǎo)數(shù)的概念及其幾何意義,了解左導(dǎo)數(shù)與右導(dǎo)數(shù)的定義,理解

熱門推薦

最新文章