導語:祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數(shù)學方面的書籍,勤奮好學,刻苦實踐,終于使他成為我國古代杰出的數(shù)學家、天文學家.大家對他的了解多不多呢?
四年級上冊數(shù)學手抄報的圖片精選01
四年級上冊數(shù)學手抄報的圖片精選02
四年級上冊數(shù)學手抄報的圖片精選03 四年級上冊數(shù)學手抄報的圖片精選:
數(shù)學家的故事??祖沖之
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數(shù)學方面的書籍,勤奮好學,刻苦實踐,終于使他成為我國古代杰出的數(shù)學家、天文學家.
祖沖之在數(shù)學上的杰出成就,是關于圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".后來發(fā)現(xiàn)古率誤差太大,圓周率應是"圓徑一而周三有余",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內(nèi)接正多邊形的周長來逼近圓周長.劉徽計算到圓內(nèi)接96邊形,求得π=3.14,并指出,內(nèi)接正多邊形的邊數(shù)越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經(jīng)過刻苦鉆研,反復演算,求出π在3.1415926與3.1415927之間.并得出了π分數(shù)形式的近似值,取為約率,取為密率,其中取六位小數(shù)是3.141929,它是分子分母在1000以內(nèi)最接近π值的分數(shù).祖沖之究竟用什么方法得出這一結果,現(xiàn)在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內(nèi)接16,384邊形,這需要化費多少時間和付出多么巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數(shù)學家獲得同樣結果,已是一千多年以后的事了.為了紀念祖沖之的杰出貢獻,有些外國數(shù)學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經(jīng)典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發(fā)現(xiàn)過去歷法的嚴重誤差,并勇于改進,在他三十三歲時編制成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖?(也是我國著名的數(shù)學家)一起,用巧妙的方法解決了球體體積的計算.他們當時采用的一條原理是:"冪勢既同,則積不容異."意即,位于兩平行平面之間的兩個立體,被任一平行于這兩平面的平面所截,如果兩個截面的面積恒相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以后一千多年才由卡氏發(fā)現(xiàn)的.為了紀念祖氏父子發(fā)現(xiàn)這一原理的重大貢獻,大家也稱這原理為"祖?原理".