關(guān)于數(shù)列求和的解題方法總結(jié)

思而思學(xué)網(wǎng)

篇一:數(shù)列求和的教學(xué)設(shè)計(jì)

一教學(xué)知識(shí)點(diǎn):

數(shù)列通項(xiàng)與數(shù)列求和

二. 教學(xué)要求:

掌握數(shù)列的通項(xiàng)公式的求法與數(shù)列前n 項(xiàng)和的求法。能通過(guò)轉(zhuǎn)化的思想把非等差數(shù)列與非等比數(shù)列轉(zhuǎn)化為兩類基本數(shù)列來(lái)研究其通項(xiàng)與前n項(xiàng)的和。

三. 教學(xué)重點(diǎn)、難點(diǎn):

重點(diǎn):等差數(shù)列與等比數(shù)列的求和,及其通項(xiàng)公式的求法。

難點(diǎn):轉(zhuǎn)化的思想以及轉(zhuǎn)化的途徑。

四. 基本內(nèi)容及基本方法

1、求數(shù)列通項(xiàng)公式的常用方法有:觀察法、公式法、待定系數(shù)法、疊加法、疊乘法、Sn法、輔助數(shù)列法、歸納猜想法等;

(1)根據(jù)數(shù)列的前幾項(xiàng),寫出它的一個(gè)通項(xiàng)公式,關(guān)鍵在于找出這些項(xiàng)與項(xiàng)數(shù)之間的關(guān)系,常用的方法有觀察法、通項(xiàng)法,轉(zhuǎn)化為特殊數(shù)列法等.

(2)由Sn求an時(shí),用公式an=Sn-Sn-1要注意n≥2這個(gè)條件,a1應(yīng)由a1=S1來(lái)確定,最后看二者能否統(tǒng)一.

(3)由遞推公式求通項(xiàng)公式的常見形式有:an+1-an=f(n),

=f(n),an+1=pan+q,分別用累加法、累乘法、迭代法(或換元法).

2、數(shù)列的前n項(xiàng)和

(1)數(shù)列求和的常用方法有:公式法、分組求和法、錯(cuò)位相減法、裂項(xiàng)相消法、倒序求和法等。

求數(shù)列的前n項(xiàng)和,一般有下列幾種方法:

(2)等差數(shù)列的前n項(xiàng)和公式:

Sn= = .

(3)等比數(shù)列的前n項(xiàng)和公式:

①當(dāng)q=1時(shí),Sn= .

②當(dāng)q≠1時(shí),Sn= .

(4)倒序相加法:將一個(gè)數(shù)列倒過(guò)來(lái)排列與原數(shù)列相加.主要用于倒序相加后對(duì)應(yīng)項(xiàng)之和有公因子可提的數(shù)列求和.

(5)錯(cuò)位相減法:適用于一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)相乘構(gòu)成的數(shù)列求和.

(6)裂項(xiàng)求和法:把一個(gè)數(shù)列分成幾個(gè)可直接求和的數(shù)列.

方法歸納:①求和的基本思想是“轉(zhuǎn)化”。其一是轉(zhuǎn)化為等差、等比數(shù)列的求和,或者轉(zhuǎn)化為求自然數(shù)的方冪和,從而可用基本求和公式;其二是消項(xiàng),把較復(fù)雜的數(shù)列求和轉(zhuǎn)化為求不多的幾項(xiàng)的和。

②對(duì)通項(xiàng)中含有(-1)n的數(shù)列,求前n項(xiàng)和時(shí),應(yīng)注意討論n的奇偶性。

③倒序相加和錯(cuò)位相減法是課本中分別推導(dǎo)等差、等比數(shù)列前n項(xiàng)和用到的方法,在復(fù)習(xí)中應(yīng)給予重視。

【典型例題】

例1. 已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n.

(1)求證:{an}為等差數(shù)列;

(2)求S n的最小值及相應(yīng)的n;

(3)記數(shù)列{

}的前n項(xiàng)和為Tn,求Tn的表達(dá)式。

解:(1)n=1時(shí),a1=S1=-8

n≥2時(shí),an=Sn-Sn-1=2n-10

∴ an=2n-10 an+1-an=2

∴ {an}是等差數(shù)列.

(2)Sn=n2-9n=(n-

)2-

∴當(dāng)n=4或n=5時(shí),Sn有最小值-20.

(3)an=2n-10 ∴ | an |=| 2n-10 |

令an≥0

n≥5 ∴ 當(dāng)n≤4時(shí),| an |=10-2n

Tn=

,當(dāng)n≥5時(shí),

Tn=-a1-a2-a3-a4+a5+a6+…+an

=(a1+a2+…+an)-(a1+a2+a3+a4)=Sn-2S4

=n2-9n-2×(-20)=n2-9n+40

∴ Tn=

篇二:《數(shù)列求和》教學(xué)設(shè)計(jì)

等比數(shù)列這個(gè)名詞是我們?cè)跀?shù)學(xué)中經(jīng)常會(huì)用到的一個(gè)名詞,我們?cè)诔踔械臅r(shí)候就開始學(xué)習(xí)等比數(shù)列,但是在升入高中以后可能還是對(duì)這一個(gè)難題束手無(wú)策,在這里,小編就要教教大家如何用等比數(shù)列求和,攻克這一個(gè)數(shù)學(xué)難題!

一.等比數(shù)列求和的教學(xué)基礎(chǔ)

1.知識(shí)結(jié)構(gòu)

先用錯(cuò)位相減法推出等比數(shù)列前項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前n項(xiàng).

2.重點(diǎn)、難點(diǎn)分析

教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前n項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法.等比數(shù)列前n項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意 q=1和q=1兩種情況.

3.學(xué)習(xí)建議

①本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題.

②等比數(shù)列前n項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論

③等比數(shù)列前n項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣

④編擬例題時(shí)要全面,不要忽略 的情況.

⑤通項(xiàng)公式與前n項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大

⑥補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題.

二、等比數(shù)列求和公式

一個(gè)數(shù)列,如果任意的后一項(xiàng)與前一項(xiàng)的比值是同一個(gè)常數(shù),且數(shù)列中任何項(xiàng)都不為0,

即:A(n+1)/A(n)=q (n∈N), 這個(gè)數(shù)列叫等比數(shù)列,其中常數(shù)q 叫作公比。

如: 2、4、8、16......2^10 就是一個(gè)等比數(shù)列,其公比為2, 可寫為 an=2×2^(n-1) 通項(xiàng)公式 an=a1×q^(n-1);

1.通項(xiàng)公式與推廣式

推廣式:an=am×q^(n-m) [^的意思為q的(n-m)次方];

2.求和公式

Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-anq)/(1-q) (q≠1) S∞=a1/(1-q) (n-> ∞)(|q|<1) (q為公比,n為項(xiàng)數(shù))

3.等比數(shù)列求和公式推導(dǎo)

①Sn=a1+a2+a3+...+an(公比為q)

②qSn=a1q+a2q+a3q+...+anq =a2+a3+a4+...+a(n+1)

③Sn-qSn=a1-a(n+1)

④(1-q)Sn=a1-a1q^n

⑤Sn=(a1-a1q^n)/(1-q)

⑥Sn=(a1-anq)/(1-q)

⑦Sn=a1(1-q^n)/(1-q)

4性質(zhì) 簡(jiǎn)介

①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列; 等比數(shù)列的性質(zhì)

③若m、n、q∈N,且m+n=2q,則am×an=(aq)^2;

④ 若G是a、b的等比中項(xiàng),則G^2=ab(G ≠ 0);

⑤在等比數(shù)列中,首項(xiàng)a1與公比q都不為零

三.學(xué)習(xí)等比數(shù)列的方法

1知識(shí)與技能目標(biāo)

理解用錯(cuò)位相減法推導(dǎo)等比數(shù)列前n項(xiàng)和公式的過(guò)程,掌握公式的特點(diǎn),并在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.

2.過(guò)程與方法目標(biāo)

通過(guò)對(duì)公式的研究過(guò)程,提高學(xué)生的建模意識(shí)及探究問(wèn)題、分析與解決問(wèn)題的能力,體會(huì)公式探求過(guò)程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).

3.情感、態(tài)度與價(jià)值目標(biāo)

通過(guò)學(xué)生自主對(duì)公式的探索,激發(fā)學(xué)生的求知欲,鼓勵(lì)學(xué)生大膽嘗試、勇于探索、敢于創(chuàng)新,磨練思維品質(zhì),并從中獲得成功的體驗(yàn),感受思維的奇異美、結(jié)構(gòu)的對(duì)稱美、形式的簡(jiǎn)潔美、數(shù)學(xué)的嚴(yán)謹(jǐn)美.

4..教學(xué)重點(diǎn)、難點(diǎn)

①重點(diǎn):等比數(shù)列前n項(xiàng)和公式的推導(dǎo)及公式的簡(jiǎn)單應(yīng)用. 突出重點(diǎn)的方法:“抓三線、突重點(diǎn)”,即一是知識(shí)技能線:?jiǎn)栴}情境→公 式推導(dǎo)→公式運(yùn)用;二是過(guò)程方法線:從特殊、歸納猜想到一般→錯(cuò)位相減法→數(shù)學(xué)思想;三是能力線:觀察能力→初步解決問(wèn)題能力

.②難點(diǎn):錯(cuò)位相減法的生成和等比數(shù)列前n項(xiàng)和公式的運(yùn)用. 突破難點(diǎn)的手段:“抓兩點(diǎn),破難點(diǎn)”,即一抓學(xué)生情感和思維的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想、積極探索,并及時(shí)給予肯定;二抓知識(shí)的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給予適當(dāng)?shù)奶崾竞椭笇?dǎo).

篇三:淺析數(shù)列求和法

摘 要:數(shù)列求和是高中數(shù)學(xué)知識(shí)中的重點(diǎn)和難點(diǎn),它在高考中出現(xiàn)的頻率高,題型多種多樣,考查方式靈活。將數(shù)列求和的方法進(jìn)行總結(jié)和歸納能夠幫助學(xué)生找到其中的解題規(guī)律,提高該類型題的成功率。

關(guān)鍵詞:高中數(shù)學(xué);數(shù)列求和;方法;歸納

求數(shù)列的前n項(xiàng)和是數(shù)列題中的高頻考點(diǎn)。它的考查十分靈活,題型變化多樣,有以選擇題的方式出現(xiàn),有的則是填空題,甚至還會(huì)以一道綜合大題的方式進(jìn)行考查。本文通過(guò)用列舉典型題的方式,總結(jié)歸納了6種常見的數(shù)列求和方法,供大家參考。

一、倒序相加法

如果一個(gè)數(shù)列{an},與首末項(xiàng)等距的兩項(xiàng)之和等于首末兩項(xiàng)之和,可采用把正著寫與倒著寫的兩個(gè)和式相加,就得到一個(gè)常數(shù)列的和,這一求和方法稱為倒序相加法。倒序相加法是數(shù)列求和當(dāng)中應(yīng)用最廣的一種解題方法,它的基本類型可以用公式表示為:a1+an=a2+an-1=a3+an-2=a4+an-3…具體解法見下面的例題。

例:設(shè)等差數(shù)列{an},公差為d,求證:{an}的前n項(xiàng)和Sn=n(a1+an)/2

解:Sn=a1+a2+a3+…+an①

倒序得:Sn=an+an-1+an-2+…+a1②

①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)

又∵a1+an=a2+an-1=a3+an-2=…=an+a1

∴2Sn=n(a2+an) Sn=n(a1+an)/2

倒序相加法的解題關(guān)鍵就是要能夠看到首項(xiàng)和末項(xiàng)之間的關(guān)系,這就需學(xué)生要有一定的敏感度,一眼就能找準(zhǔn)解題的方法,然后就是要細(xì)心地做。()因此,做數(shù)列題除了要注意總結(jié)和歸納解題方法外,大量的習(xí)題訓(xùn)練也是十分必要的。

二、用公式法

對(duì)等差數(shù)列、等比數(shù)列,求前n項(xiàng)和Sn可直接用等差、等比數(shù)列的前n項(xiàng)和公式進(jìn)行求解。等差數(shù)列的基本求和公式為:Sn=(a1+an)n/2;變形公式為Sn=na1+n(n-1)d/2(d為公差)。等比數(shù)列的求和公式為:Sn=na1(q=1);Sn=a1(1-qn)/(1-q)=(a1-anq)/(1-q)(q≠1)(q為公比,n為項(xiàng)數(shù))。利用公式來(lái)求數(shù)列之和是一種比較基本的題型,它的難度不大,只要掌握基本公式,并且具有一定的敏感度就能做對(duì)這類型的題。

三、裂項(xiàng)相消法

裂項(xiàng)相消法是數(shù)列求和中比較難的一類題型,因?yàn)樗缓每闯鰯?shù)列之間的規(guī)律。如果裂項(xiàng)不對(duì),也不能將問(wèn)題解出。裂項(xiàng)相消法的解題原理是:將數(shù)列的一項(xiàng)拆成兩項(xiàng)或多項(xiàng),使得前后項(xiàng)相抵消,留下有限項(xiàng),從而求出數(shù)列的前n項(xiàng)和。

四、錯(cuò)位相減法

若在數(shù)列{an?bn}中,{an}成等差數(shù)列,{bn}成等比數(shù)列,在和式的兩邊同乘以公比,再與原式錯(cuò)位相減整理后即可以求出{anbn}前n項(xiàng)和。

錯(cuò)位相減法其實(shí)并不難,關(guān)鍵是要細(xì)心,要能找好兩個(gè)式子之間的對(duì)應(yīng)項(xiàng),如果二者相減的時(shí)候沒(méi)有找準(zhǔn)對(duì)應(yīng)項(xiàng),即便思路再對(duì),也會(huì)滿盤皆輸。因此,做任何一道數(shù)列題,都要求書寫工整,格式規(guī)范,以免造成不必要的失分。

五、疊加法

疊加法主要應(yīng)用于數(shù)列{an}滿足an+1=an+f(n),其中f(n)在等差數(shù)列或等比數(shù)列的條件下,可把這個(gè)式子變成an+1-an=f(n),代入各項(xiàng),得到一系列式子,把所有的式子加到一起,經(jīng)過(guò)整理,可求出an,從而求出Sn.

六、分組求和法

分組求和法就是對(duì)一類既不是等差數(shù)列,也不是等比數(shù)列的數(shù)列,若將這類數(shù)列適當(dāng)拆開,可分為幾個(gè)等差、等比或常見的數(shù)列,然后分別求和,最后將其合并的方法。記住了這一類題型的特點(diǎn),就能準(zhǔn)確找到解題思路。

總之,數(shù)列求和以其靈活多變的出題方式和較高的錯(cuò)題率成為高中數(shù)學(xué)中的難點(diǎn)。這類題雖然難,但也并不是無(wú)規(guī)律可循的。萬(wàn)變不離其宗,教師在講課當(dāng)中應(yīng)該幫助學(xué)生多多總結(jié)歸納相關(guān)的解題技巧和解題方法,并配合適當(dāng)?shù)脑囶}訓(xùn)練;學(xué)生自身也要多思考,可以準(zhǔn)備一個(gè)錯(cuò)題記錄本時(shí)常翻看,有助于將這類問(wèn)題消化吸收,最終將其完全掌握。

淺談高中數(shù)學(xué)教學(xué)方法新課改下高中數(shù)學(xué)教學(xué)存在的問(wèn)題及對(duì)策在高中數(shù)學(xué)教學(xué)中倡導(dǎo)積極主動(dòng)的學(xué)習(xí)方式

熱門推薦

最新文章